
1

Chimera Workshop

December 10th, 2002

2

Outline

Install Chimera

Run Chimera
– Hello world

– Convert simple shell pipeline

– Some diamond, etc.

☯ Get (some) user apps to run with shplan

Introduce The Grid
– As time permits

3

Prepare Chimera Installation

Log onto your Linux system.

Ensure Java version 1.3.*
– Type "$JAVA_HOME/bin/java –version"

– If necessary, download from
http://java.sun.com/j2se/1.3/

– Using Java 1.4.* is permissible

Check JAVA_HOME environment variable
– Points to Java installation directory

– Example: setenv JAVA_HOME /usr/lib/java

4

Install Chimera

Download the latest tar-ball
http://www.griphyn.org/workspace/VDS/snapshots.php

– The binary release is smaller

– The source release allows patching

– Let's try the source release for now…

Unpack
– gtar xvzf vds-source-YYYYMMDD.VV.tar.gz

cd vds-1.0b4
– Current version is beta4

5

Starting Chimera

Source necessary shell script (all releases)
– Some environments require explicit setting

of VDS_HOME=`/bin/pwd` before sourcing
– Bourne: . setup-user-env.sh
– C-Shell: source setup-user-env.csh
– Ignore warnings (but not errors) about

VDS_HOME

Run test-version program to check
– Script is a minimum sanity test
– If it fails, Chimera will not run!

6

Sample test-version Script Output
checking for JAVA_HOME
checking for CLASSPATH
checking for VDS_HOME
script JAVA_HOME=/usr/lib/java
script CLASSPATH=…/lib/java-getopt-
1.0.9.jar:…/lib/xercesImpl.jar:…/lib/chimera.jar:…/lib/antlrall
.jar:…/lib/xmlParserAPIs.jar
starting java
Using recommended version of Java, OK
looking for Xerces
found xercesImpl\.jar, OK for now
looking for antlr
found antlr(all)?.jar, OK for now
looking for GNU getopt
found java-getopt-.\..\..\.jar, OK for now
looking for myself
in developer mode, ignore not finding chimera.jar
found chimera\.jar, OK for now

2

7

Working with Chimera files

VDLt
vdlt2vdlx

VDLx

vdlx2vdlt

ins/upd

VDLx

VDLxgendaxDAX

Only the abstract planning process is shown

8

The Virtual Data Languages

VDLt is textual

Concise

For human
consumption

Usually for (TR)
transformation!

Process by
converting to VDLx

VDLx uses XML

Uses XML-Schema

For generation from
scripts

Usually for (DV)
derivations!

Storage
representation of
default VDDB

9

Virtual Data Language

A "function call" paradigm
– Transformations are like function

definitions.

– Derivations are like function calls.

Many calls to one definition
– Many (zero to N) calls of the same

transformation.

10

The Virtual Data Database

5 different backends supported

3 backends employ SQL
– Some experimental code included

more than 1000chunk (Pg-based)

more than 1000mysql

more than 1000postgres

up to 10000dir (experimental)

up to 1000file (default)

11

Hello World

Exercise 1:
– Wrap echo 'Hello world!' into VDL

Start by defining the transformation
TR hw(output file) {

argument = "Hello world!";
argument stdout = ${file}; }

Then "call" the transformation
DV d1->hw(file=@{output:"out.txt"});

Save into a file hw.vdl

12

What to do with it?

All VDLt must be converted into VDLx
before it becomes "usable" to the VDS.
vdlt2vdlx hw.vdl hw.xml

All VDLx must be stored into your VDDB,
before the system can work with it
insertvdc hw.xml

or
updatevdc hw.xml

3

13

vdlt2vdlx

All VDLt must be converted into VDLx
before it becomes "usable" to the VDS.
vdlt2vdlx hw.vdl hw.xml

14

XML Output
<?xml version="1.0" encoding="UTF-8"?>

<!-- ... -->

<definitions ...>

<transformation name="hw">

<declare name="file" container="scalar" link="output"/>

<argument>

<text>Hello world!</text>

</argument>

<argument name="stdout">

<use name="file"/>

</argument>

</transformation>

<derivation name="d1" uses="hw">

<pass bind="file">

<scalar>

<lfn file="out.txt" link="output"/>

</scalar>

</pass>

</derivation>

</definitions>

15

Creating the VDDB

All VDLx must be stored into the VDDB,
before the system can work with it
insertvdc hw.xml

or
updatevdc hw.xml

Default VDDB in $VDS_HOME/var/vds.db
– Unless overwritten by properties

16

Result of Insertion
sheveled:~ $ insertvdc hw.xml

2002.12.09 10:32:56.895 CST: [app] Connecting the database
backend

2002.12.09 10:32:57.276 CST: [app] will use
/homes/voeckler/vds-1.0b4/etc/vdl-1.20.xsd

2002.12.09 10:32:57.276 CST: [app] parsing "hw.xml"

2002.12.09 10:32:58.115 CST: [app] Adding hw

2002.12.09 10:32:58.124 CST: [app] Adding d1

2002.12.09 10:32:58.151 CST: [app] modified 2 definitions

2002.12.09 10:32:58.151 CST: [app] rejected 0 definitions

17

From VDC to DAX

Deriving the provenance of a logical file or
derivation is the abstract planning process.
All files and transformations are logical!
– The complete provenance will be unrolled
– No external catalogs (TC, RC) are queried

Ask the catalog for the produced file
gendax –l hw –o hw.dax –f out.txt

Or ask for the derivation (to be fixed)
gendax –l hw –o hw.dax –i hello

18

From VDC to DAX
sheveled:~ $ gendax –l hw –o hw1.dax –f out.txt

2002.12.09 11:08:25.031 CST: [app] Connecting the database
backend

2002.12.09 11:08:25.419 CST: [app] will use
/homes/voeckler/vds-1.0b4/etc/vdl-1.20.xsd

2002.12.09 11:08:26.291 CST: [app] 2 definitions loaded into
main memory

2002.12.09 11:08:26.292 CST: [app] starting to route dbase

2002.12.09 11:08:26.315 CST: [app] requesting LFN "out.txt"

2002.12.09 11:08:26.353 CST: [app] saving output to hw1.dax

4

19

The DAX file

The result of the Chimera abstract
planner.
Richer than Condor DAGMan format.
Expressed in terms of logical entities.
Contains complete (build) lineage.
Consists of three major parts
1. All logical files necessary for the DAG.
2. All jobs necessary to produce all files.
3. The dependencies between the jobs.

20

The DAX file
<?xml version="1.0" encoding="UTF-8"?>

<!-- generated: 2002-12-09T10:55:41-06:00 -->

<!-- generated by: voeckler [US] -->

<adag ... count="1" index="0" name="hw">

<filename file="out.txt" link="output" isTemporary="false"/>

<job name="hw" id="ID000001">

<argument>Hello world! </argument>

<stdout file="out.txt" link="output" isTemporary="false"/>

<uses file="out.txt" link="output" isTemporary="false"/>

</job>

</adag>

21

The Transformation Catalog

Translates logical transformation into an
application specific for a certain pool
Similar for all concrete planners of Chimera
Simple, text based file
– 4+ columns
– Blank lines and comments are ignored

Standard location
– $VDS_HOME/var/tc.data
– adjustable with property vds.db.tc

22

Transformation Catalog Columns

1st column is the pool handle
– Shell planner only uses the "local" handle
– Other handles for grid planner

2nd column is the logical transformation
– Format: <ns>_ _ <name>_<version>
– Name-only names are just <name>

3rd column is the path to the executable
4th column for environment variables
– Use "null" if unused
– Format: key=value;key=value

23

Example for a TC

local world /homes/voeckler/bin/keg null

uofc globus-url-copy /vdt/bin/globus-url-
copy GLOBUS_LOCATION=/vdt;
LD_LIBRARY_PATH=/vdt/lib

24

The Shplan Replica Catalog

A replica catalog translates a logical
filename into a set of physical filenames
This RC is for the shell planner only!
Simple textual file
– 3 columns
– Blank lines and comments are ignored

Standard location
– $VDS_HOME/var/rc.data
– Adjustable with property vds.db.rc

5

25

Shell planner RC Columns

1st column is the pool handle
– Shell planner only uses the "local" handle

– Other handles for concrete planner

2nd column is the logical filename
– A LFN may contain slash etc.

3rd column is the path to the file

Are multiples allowed?
– No, only the last (first?) match is taken

26

TC and RC Short-cuts

Application locations can come from VDL
– hints.pfnHint takes precedence over TC

– Shell planner may run w/o any TC

Files need not be registered with RC
– Existence checks are done in file system

– RC updates can be optional

– Shell planner may run w/o any RC

➨ After all, we run locally with the shell planner!

27

Preparing to Run The Shell Planner

Make sure that your TC contains a
translation for logical transformation "hw"
local hw /bin/echo null

Make sure that there is a RC without weird
content:
cp /dev/null $VDS_HOME/var/rc.data

28

Running The Shell Planner

Run the shell planner
shplanner –o hw hw1.dax

Check directory "hw"
– Master script: <DAX-label>.sh

– Job scripts: <TR>_<DAX-JobID>.sh

– Helper files: <TR>_<DAX-JobID>.lst

29

Running The Shell-Plan

Shell planner generates a master plan
– This is a tool-kit ➠ no auto-run feature

Run the master plan
(cd hw && ./hw.sh)

Can check log file for status etc.
– Standard name: <DAX-label>.log

Master script will exit with 0 on success
– Exit 1, if any sub-script fails.

30

Running The Shell-Plan

sheveled:~ $./hw.sh

Running hw

job finished

please look at hw.log for execution logs.

sheveled:~ $ cat out.txt

Hello world!

sheveled:~ $ cat hw.log

2002-12-09T11:04:02 ID000001 started hw

2002-12-09T11:04:02 ID000001 finished hw

6

31

Convert A Unix Pipeline

Example 2: Full name from a username
grep ^user /etc/passwd | awk –F: '{ print $5 }'

1. Create abstract transformations

2. Create concrete derivations to call them

3. Convert into VDLx

4. Add to VDDB

5. Run abstract planner

6. Run shell planner

7. Run master script

32

Abstract Transformations

Grep for an arbitrary user name
TR grep(none name, output of)

{ argument = "^"${name}" /etc/passwd";
argument stdout = ${of}; }

Extract a full name from a line
TR awk(input line, output full)

{ argument stdin = ${line};
argument stdout = ${full};
argument = "-F: '{ print $5 }' "; }

33

Concrete Derivations

Run with a concrete username…
DV d2->grep(name="voeckler",

of=@{output:"grepout.txt"});

… and post-process the results
DV d3->awk(line=@{in:"grepout.txt"},

full=@{out:"awkout.txt"});

The two derivations are linked by a LFN
– "grepout.txt" is produced by "d2"

– "grepout.txt" is consumed by "d3"

34

Convert, Insert and Plan

Convert into VDLx
vdlt2vdlx ex2.vdl ex2.xml

Insert into your VDDB
insertvdc ex2.xml

Run abstract planner
gendax –l ex2 –o ex2.dax –f awkout.txt

35

Run Shell Planner

Prepare transformation catalog
local grep /usr/bin/egrep null

local awk /bin/gawk null

Run shell planner
shplanner –o ex2 ex2.dax

Run master plan
(cd ex2 && ./ex2.sh)

36

Kanonical Executable for Grids

Simple application
– Copies all input with indentation to all

output files

– Adds additional data about itself

Allows tracking
– What ran where, when, which architecture,

and how long

To be used as stand-in for real applications
– Allows to check the DAG stages

7

37

Kanonical Executable for Grids
sheveled:~ $ keg -o /dev/fd/1

Timestamp Today: 20021210T111605-06:00
(1039540565.690;0.003)

Applicationname: keg @ 140.221.10.73
(sheveled.mcs.anl.gov)

Current Workdir: /home/voeckler

Systemenvironm.: i686-Linux 2.4.17-w

Processor Info.: 2 x Pentium III (Coppermine) @ 996.635

Output Filename: /dev/fd/1

38

The Black Diamond DAG

Complex structure
– Fan-in

– Fan-out

– "left" and "right" can
run in parallel

Uses input file
– Register with RC

Complex file
dependencies

39

The Black Diamond DAG II

The "black diamond" takes one input file
echo –e "local\tf.a\t${HOME}/f.a" »

$VDS_HOME/var/rc.data

date > ${HOME}/f.a

It uses three different transformations
echo –e "local\tpreprocess\t$VDS_HOME/bin/keg\tnull"

» $VDS_HOME/var/tc.data

echo –e "local\tfindrange\t$VDS_HOME/bin/keg\tnull"
» $VDS_HOME/var/tc.data

echo –e "local\tanalyze\t$VDS_HOME/bin/keg\tnull" »
$VDS_HOME/var/tc.data

40

The Black Diamond DAG III

Running on the grid is more complex
– Activate your grid proxy

– Set up the replica catalog
> Currently RLS (new) and G2RC (default) available

> Register src, dst, and run pool with RC using a dummy

> Register input file f.a, unregister all other files

– Set up pool.config for src, dst, run and local

– Set up tc.data file for src, dst, run and local

– Run concrete planner with --donotrun

– Run Condor DAGMan on output

41

The Black Diamond DAG IV

42

Compound Transformations

Using compound TR
– Allows to call a known TR

– Calls are independent unless linked through LFN

TR diamond bundles black-diamonds
TR diamond(out fd, io fc, io fb, io fa, p2, p1) {

call generate(f=${out:fa}, p1=${p1});

call process(f1=${in:fa}, name="LEFT", p2=${p2},
f2=${out:fb});

call process(f1=${in:fa}, name="RIGHT", p2=${p2},
f2=${out:fc});

call combine(f1=${in:fb}, f3=${out:fd}, f2=${in:fc});

}

8

43

Compound Transformations II

Multiple DVs allow easy bundling:
DV d1->diamond(fd=@{out:"f.00003"},

fc=@{io:"f.00002"}, fb=@{io:"f.00001"},
fa=@{io:"f.00000"}, p2="100", p1="0");

DV d2->diamond(fd=@{out:"f.00007"},
fc=@{io:"f.00006"}, fb=@{io:"f.00005"},
fa=@{io:"f.00004"}, p2="141.42135623731",
p1="0");

...
DV d70->diamond(fd=@{out:"f.00117"},

fc=@{io:"f.00116"}, fb=@{io:"f.00115"},
fa=@{io:"f.00114"}, p2="800", p1="18");

44

A Big Example

Overall tree structure
+ 70 "regular" diamond DAGs on top

+ 10 collecting nodes

+ 1 final collector

= 291 jobs to run

• All files are generated, no RC preloading

• Add "multi" TR to last example
echo –e "local\tmulti\t$VDS_HOME/bin/keg\tnull" »

$VDS_HOME/var/tc.data

